Human Perception of Weight in Remote Robot System with Force Feedback

Limin Wen¹ Yutaka Ishibashi¹ Pingguo Huang² Yuichiro Tateiwa¹ Hitoshi Ohnishi³

¹Nagoya Institute of Technology, ²Seijoh University, ³The Open University of Japan

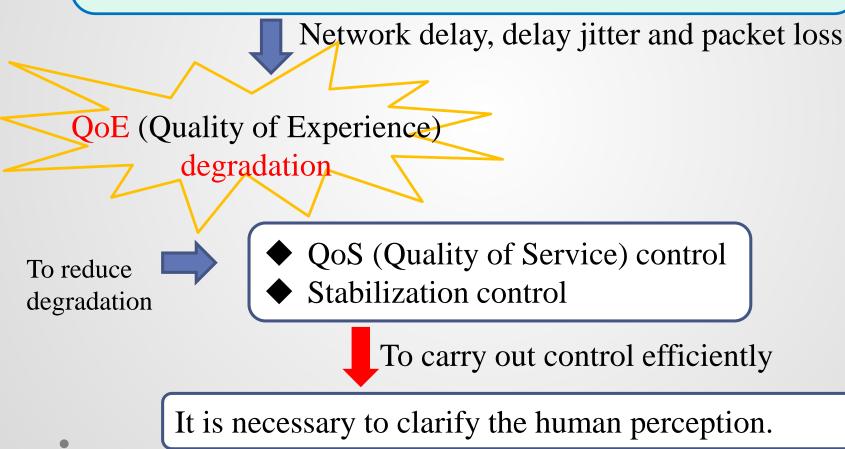
IEICE Technical Committee on Communication Quality July 18, 2019, Niigata University

Outline

- 1. Background
- 2. Purpose
- 3. Remote Robot System with Force Feedback
- 4. Assessment Method
- 5. Assessment Results
- 6. Conclusion and Future Work

Background (1/2)

Remote robot systems with force feedback have been actively researched.


A user can operate a remote industrial robot by using a haptic interface device while watching video.

• The user can perceive the shape, weight, and softness of a remote object.

We expect that the efficiency and accuracy of work can be improved largely.

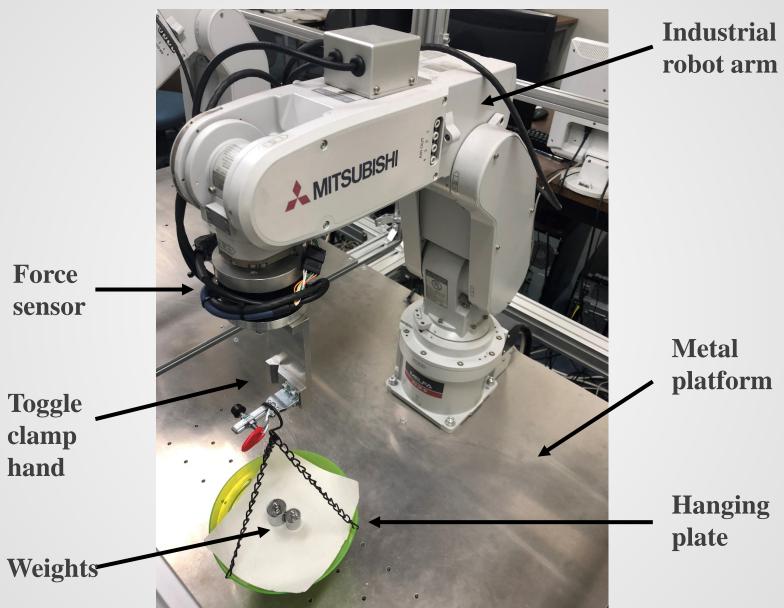
Background (2/2)

When we use the remote robot system with force feedback over a network like the Internet, which does not guarantee the Quality of Service (QoS).

Purpose (1/2)

Previous work

- Investigate human weight perception by using a weight balance system in a networked virtual space by QoE assessment^{*1}.
- The weight balance system is a system in which two users collaborate in a three-dimensional (3D) virtual space to lift a weight vertically.
 - Humans can hardly perceive absolute weight changes lighter than or equal to about 10 gf.
 - Subjects start to perceive the change less than or equal to 20 gf.
 - The study is conducted by using the haptic interface device only in a virtual space.
 - It is also important to clarify the human perception in a real space.



This work

- We investigate human weight perception through the remote robot system with force feedback by QoE assessment in a real space.
- We assess whether each subject can perceive the difference of the weight after changing the weight hung from the industrial robot.

Remote Robot System with Force Feedback **Industrial robot** Force interface unit Force sensor Haptic interface device Toggle clamp hand **Robot controller Robot arm** PC for haptic interface device Switching hub PC for industrial robot Network Switching hub PC for video PC for video / Web camera **Master terminal** Slave terminal

Industrial Robot Arm

Calculate Method of Reaction Force

The reaction force $F_t^{(m)}$ to be outputted thought the device at time t (t ≥ 1) (ms) is calculated from the value of the force sensor.

$$\boldsymbol{F}_{t}^{(m)} = K_{\text{scale}} \boldsymbol{F}_{t-1}^{(s)}$$

 $F_t^{(m)}$: Reaction force outputted at time t (≥ 1)

- $F_t^{(s)}$: Force received from slave terminal at time t (≥ 1)
- *K*_{scale} : Mapping ratio about scale of force

Force (Robot : Geomagic) $1:1(K_{scale}=1)$

Robot: Industrial robot

Geomagic: Haptic interface device

Calculation for Position of Industrial Robot

At the slave terminal, the industrial robot arm is operated according to the position information transmitted from the master terminal.

$$\boldsymbol{S}_t = \boldsymbol{M}_{t-1}$$

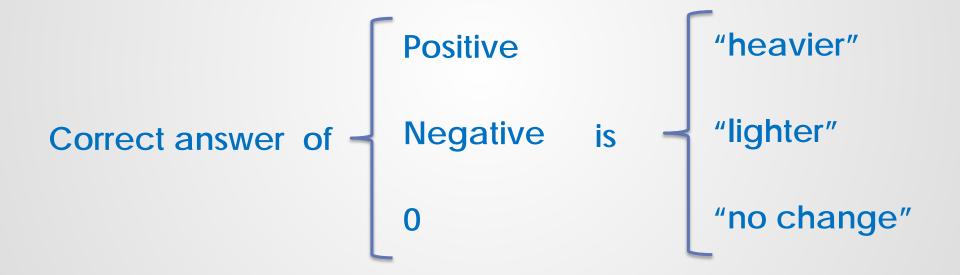
- S_t : Position vector of industrial robot at time t (≥ 1)
- M_t : Position vector of haptic interface device at time t (≥ 1)

Work space (Robot : Geomagic) 1 : 1

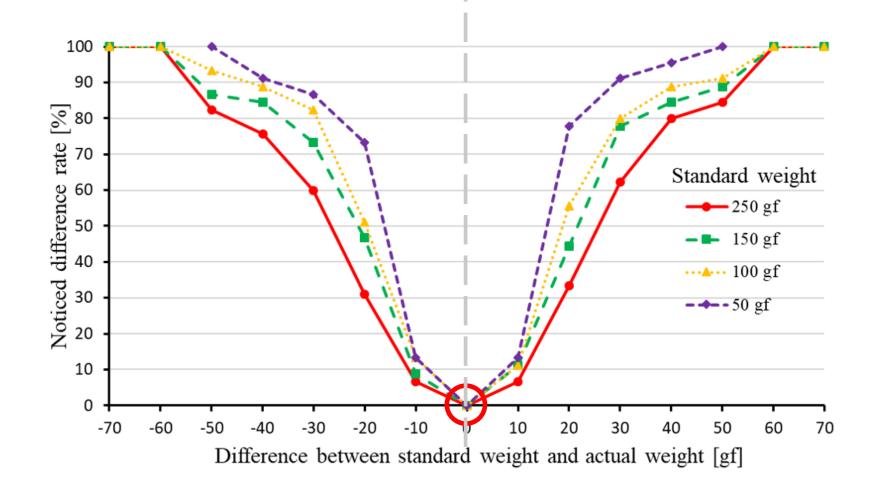
Robot: Industrial robot Geomagic: Haptic interface device

Assessment Method (1/3)

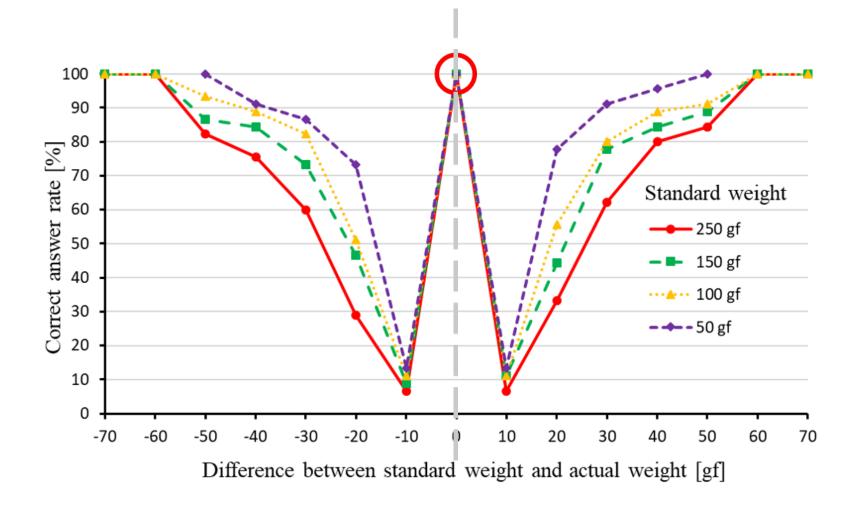
- Each subject holds the stylus of the haptic interface device and then keeps it at the same position.
- We change the weight of the hanging plate from the force sensor at a time.
- The subject feels the reaction force depending on the force sensor of the industrial robot arm.
- The weight before change is called the *standard weight* here.
- The subject is asked to answer whether the weight has been changed from the standard weight. There are three choices for the subject: "lighter," "no change," and "heavier."


Assessment Method (2/3)

Standard weights	Range of change	Total times
50 gf	−50 gf~+50 gf	33 times
100 gf	-70 gf \sim $+70 \text{ gf}$	45 times
150 gf	-70 gf \sim $+70 \text{ gf}$	45 times
250 gf	-70 gf \sim $+70 \text{ gf}$	45 times


- The negative value means that the weight after change is lighter than the standard weight, and the positive value does that the weight after change is heavier.
- The assessment was conducted by 15 subjects (8males and 7 females) whose ages were between 21 and 26.

Assessment Method (3/3)


• The standard weights are presented in a random order for each subject.

Assessment Results (1/4)

Assessment Results (2/4)

Assessment Results (3/4)

- The noticed difference rate and the correct answer rate are less than about 10% when the absolute difference is 10 gf.
- The subjects start to perceive the change of weight when the absolute difference exceeds about 20 gf.
- ➤When the absolute difference is about 30 gf, the noticed difference rate and the correct answer rate exceeded about 70%.

As the standard weight becomes smaller, the noticed difference rate and the correct answer rate tend to increase.

Assessment Results (4/4)

The shapes of the noticed difference rate and the correct answer rate look almost line-symmetrical.

- ➤We conducted t-test for the noticed difference rate and the correct answer rate to examine whether there are significant differences between the positive and negative parts.
- ≻We carried out the Tukey-Kramer method, which is used to perform multiple comparisons.

We confirmed that there is no difference between each positive part and the negative part in the perception of weight change.

Conclusion

We carried out QoE assessment of human perception of weight in the remote robot system with force feedback.

- Can hardly perceive the weight change when the absolute difference is less than or equal to 10 gf.
- Start to perceive the change of weight when the absolute difference is about 20 gf.
- There is almost no difference between when the weight becomes lighter and when the weight becomes heavier if the weight change is the same in our assessment.

Future Work

- Study the QoS control by using the results of this report, and investigate its effect.
- Investigate the influence of stabilization control on the weight perception.