QoE Assessment of Adaptive Viscoelasticity Control with Prediction in Remote Control System

Limin WEN¹ Hitoshi OHNISHI² Yutaka ISHIBASHI¹ Pingguo HUANG³ Yuichiro TATEIWA¹

¹Nagoya Institute of Technology,²The Open University of Japan , ³Gifu Shotoku Gakuen University

Nagoya Institute of Technology

2020 Tokai-Section Joint Conference on Electrical, Electronics, Information, and Related Engineering September 4, 2020, Aichi Prefectural University, Nagoya, Japan

Background

Each user can touch and move a remote Remote control object by using a haptic interface device. remotely operate haptic interface devices while watching video.

• We can largely improve the efficiency and accuracy of remote work.

When we use them through a network like the Internet

QoE (Quality of Experience)

degradation

Network delay, delay jitter and packet loss

Problems

*1 T. Abe et al., IEICE Trans. Commun. (Japanese Edition), vol. J103-B, no. 1, pp. 38-46, Jan. 2020 *2 P. Huang et al., IJCNS , vol. 5, no. 6, pp. 321-331, June 2012.

Previous work

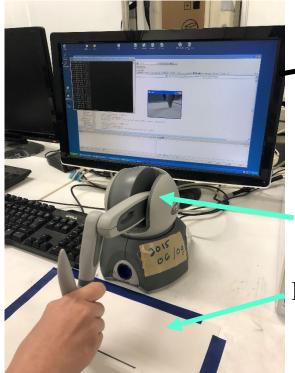
The adaptive viscoelasticity control is proposed for a remote control systems with haptics^{*1}.

The effectiveness of the control is demonstrated by QoE assessment.

- \succ The interactivity is damaged when the network delay is large.
- The difference between the trajectory of the device operated by a user and that of the remote device is large.

We carry out the prediction control^{*2} in conjunction with the adaptive viscoelasticity control.

The effect of the control has not been clarified quantitatively so far.

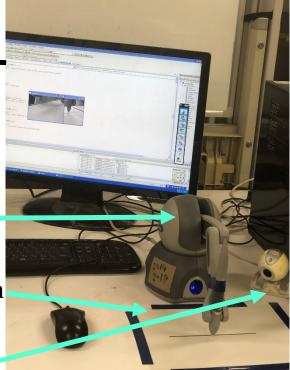

This work

Purpose

- ➤ We propose the adaptive viscoelasticity control with prediction in the remote control system.
- ➤ We illustrate that there exists the optimum prediction time according to the network delay by QoE assessment.

Remote Control System

Master terminal



Haptic interface device

Paper with line of 16 cm

Video camera

Slave terminal

Calculation for Reaction Force

Master terminal

$$\boldsymbol{F}_{t}^{(m)} = K_{s} \left(\boldsymbol{S}_{t-1}^{(m)} - \boldsymbol{M}_{t-1}^{(m)} \right) + K_{d} \left(\dot{\boldsymbol{S}}_{t-1}^{(m)} - \dot{\boldsymbol{M}}_{t-1}^{(m)} \right)$$
(1)

 $F_t^{(m)}$: Reaction force of the master terminal at time $t \ (t > 0)$

 $K_{\rm s}$: Elasticity (spring) coefficient $K_{\rm d}$: Viscosity (damper) coefficient

 $M_t^{(m)}, S_t^{(m)}$: Position vector of the haptic interface device of the master and slave terminal at time $t \ (t > 0)$

 $\dot{M}_{t}^{(m)}, \dot{S}_{t}^{(m)}$: Velocity vector of the haptic interface device of the master and slave terminal at time t (t > 0)

Slave terminal

$$\boldsymbol{F}_{t}^{(s)} = K_{s} \left(\boldsymbol{M}_{t-1}^{(s)} - \boldsymbol{S}_{t-1}^{(s)} \right) + K_{d} \left(\dot{\boldsymbol{M}}_{t-1}^{(s)} - \dot{\boldsymbol{S}}_{t-1}^{(s)} \right)$$
(2)

Adaptive Viscoelasticity Control

Adaptive elasticity control

Optimum elasticity coefficient \widehat{K}_s is determined by the network delay D (ms) as follows:

 $\widehat{K}_{\rm s} = 9/(2D + 90)$ (3)

Adaptive viscosity control

Optimum viscosity coefficient \widehat{K}_d is calculated as follows:

 $\widehat{K}_{d} = \begin{cases} 1.02 \times 10^{-5}D + 4.2 \times 10^{-5}v - 2.03 \times 10^{-4} \left(D \le D_{\text{peak}} \right) \\ -6.31 \times 10^{-6}D - 2.12 \times 10^{-4}v + 2.99 \times 10^{-3} \left(D > D_{\text{peak}} \right) \end{cases}$ (4)

$$D_{\text{peak}} = -20v + 228$$
 (5)

 D_{peak} : Network delay when the optimum viscosity coefficient has the peak value

v : Moving speed of the haptic interface device.

Prediction Control Prediction Control

Each terminal outputs position information by predicting the future position after the prediction time from the received position information.

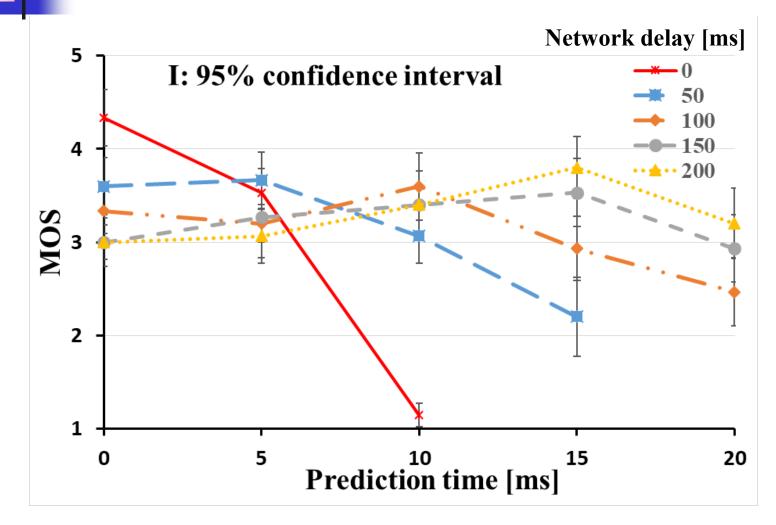
$$\boldsymbol{P}_{t+\Delta t} = \boldsymbol{P}_t + (\boldsymbol{P}_t - \boldsymbol{P}_{t-1})\Delta t \quad (6)$$

 P_t : Position vector received from the other terminal at time t (ms)

 Δt : Prediction time

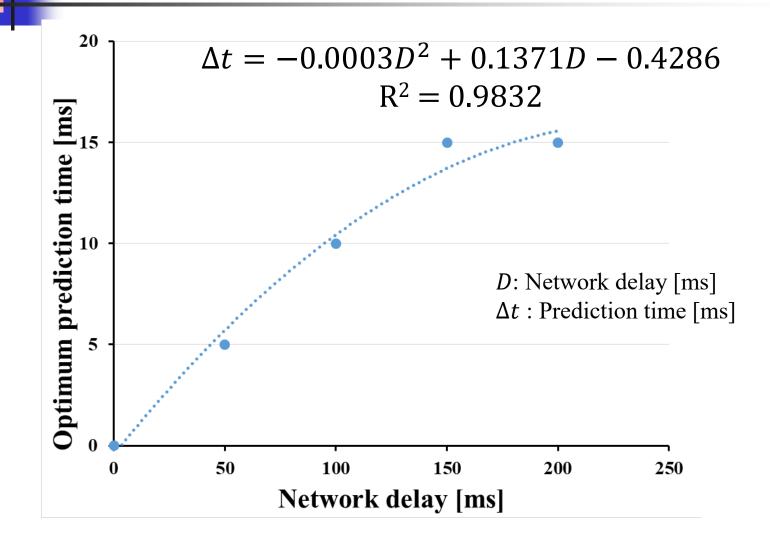
Experiment Method (1/2)

- Conducted work in which a user moves the haptic interface device from side to side (in the x axis direction) along a line with length of 16 cm drawn on a paper for 30 seconds (repeated about 5 times).
- Presented pairs of the network delay and prediction time in random order for each subject.


Experiment Method (2/2)

- Gave a score according to the five-grade impairment for each pair.
- Obtained the mean opinion score (MOS) by averaging all the scores of 15 subjects (11 males and 4 females) whose ages were between 21 and 29.

Five-grade impairment scale


Score	Description
5	Imperceptible
4	Perceptible, but not annoying
3	Slightly annoying
2	Annoying
1	Very annoying

Assessment Results (1/2)

MOS versus prediction time

Assessment Results (2/2)

Optimum prediction time versus network delay

Conclusions and Future Work

Conclusions

- We used prediction control to improve the interactivity of the remote control system with haptics under the adaptive viscoelasticity control.
- We investigated the effect of the prediction control on the operability by QoE assessment.
 - ✓ There exists the optimum prediction time depending on the network delay.
 - ✓ As the network delay becomes larger, the optimum prediction time increases.

Future Work

We plan to use the obtained results for further improvement of the operability of the haptic interface device.