

Yutaka Ishibashi[†] Pingguo Huang[‡] Kostas E. Psannis^{*}

⁺ Nagoya Institute of Technology, Japan
 ⁺ Gifu Shotoku Gakuen University, Japan

* University of Macedonia, Greece

The 4th World Symposium on Communication Engineering (WSCE 2021), Nov. 25-28, 2021

1

- ✓ Background
- ✓ Previous Work and Problem
- ✓ Purpose
- ✓ Remote Robot Systems with Force Feedback
- ✓ Enhanced Robot Position Control Using Force Information
- ✓ Experiment Method
- ✓ Experimental Results
- ✓ Conclusions and Future Work

Remote robot systems with force feedback

A user operates a remote robot having a force sensor with a haptic interface device while watching video.

- ✓ The user can perceive force when the robot touches/hits an object (i.e., force feedback).
- ✓ Remote work can be conducted at locations where humans cannot enter easily.
- ✓ Degradation of QoE (Quality of Experience) and stability owing to network delay, delay jitter, and packet loss

QoS control and stabilization control

Two remote robot systems with force feedback*1

- ✓ Adaptive Δ -causality control
 - Mitigate influence of network delay
- Robot position control using force information
 Suppress large force applied to object

Problem

Not handle mobile robots

*1 K. Kanaishi *et al.*, ITE 70th Anniversary Convention, Dec. 2020.

To operate mobile robots remotely

- Enhance robot position control using force information considering mobile robots
- For sudden position changes in up-down directions

Remote Robot Systems with Force Feedback

Calculation of Reaction Force*2

$$\boldsymbol{F}_{t}^{(m)} = K_{\text{scale}} \, \boldsymbol{F}_{t-1}^{(s)}$$

 $F_t^{(m)}$: Reaction force outputted at master terminal at time $t \ (> 0)(ms)$ $F_t^{(s)}$: Force sensed at slave terminal at time $t \ (ms)$ K_{scale} : Scale multiplied to $F_{t-1}^{(s)} (=0.5)^{*2}$

$$S_t = M_{t-1} + V_{t-1} \quad (|V_{t-1}| < V_{\max})^{*3}$$

- S_t : Position vector of robot arm at time t (> 0)
- M_t : Position vector of haptic interface device received from master terminal to slave terminal at time t (> 0)
- V_t : Velocity vector of robot arm at time t (> 0)
- V_{max} : Maximum velocity of robot arm(=5 mm/ms)

Conventional Robot position Control Using Force Information

$$\widehat{\boldsymbol{S}_t} = \boldsymbol{S}_t + \boldsymbol{P}$$

$$P_z = aF_z$$

 $a = 4.82 \times 10^{-2} l_{opt}$
 $l_{opt} = 2.01 \times 10^{3.34 \times 10^{-2} L}$

 $\widehat{S_t}$: Position vector of robot arm at time t under control

- S_t : Position vector of robot arm at time t
- **P**: Position adjustment vector to reduce force applied to object
- P_z : Position adjustment value on *z*-axis (in vertical direction)
- *a*: Coefficient for length L (= 30 cm) of wooden stick^{*4}

*4 S. Ishikawa *et al.*, IJCNS, vol. 14, no. 1, Mar. 2021. 10

Enhanced Robot position Control Using Force Information

$$P_z = aF_z$$
 ($|F_z| < 0.7N$)
 $P_n = \pm 0.01 \times 1.2^n$ ($|F_z| \ge 0.7N$)

 P_z : Position adjustment value on *z*-axis (in vertical direction) P_n : The *n*-th position adjustment value (every 3.5 ms) ($n \ge 0$)

Experiment Method

Emulation of mobile robots

System 1

- Move robot arm 1
 automatically in frontback (x-axis) direction
- Raise or drop robot arm 1 automatically by constant distance in vertical (*z*-axis) direction
- \checkmark Distance: ± 10 mm, ± 30 mm
- \checkmark Velocity: ±0.14 mm/ms

System 2

- Apply enhanced control/conventional control
- Move robot arm 2 only under control in vertical (z-axis) direction
- Move robot arm 2 manually in front-back (x-axis) direction

- Enhanced robot position control using force information by taking account of mobile robots
- Examined effect of the enhanced control by experiment

Possible to suppress large force applied to object for sudden large position change

Future Work

- To reduce position differences after the position change
- Study methods to avoiding obstacles