Robot Movement Control Using Force Sensor in Remote Robot Systems

Yutaka Ishibashi¹, Kaoru Fujii¹, Pingguo Huang², and Yuichiro Tateiwa¹

¹Nagoya Institute of technology, Japan ²Gifu Shotoku Gakuen University, Japan

Outline

- Background
- **■** Previous Work
- **■** Remote Robot Systems with Force Feedback
- Purpose of This Work
- **■** Experiment Method
- **■** Experimental Results
- **■** Conclusion and Future Work

Background

Remote robot systems with force feedback

A user can remotely operate a robot having a force sensor by using a haptic interface device while monitoring the movement of the robot.

Efficient and accurate cooperative work between the systems

Feel the force obtained by the force sensor when the robot touches/moves an object

Network environments are not always good.

Cooperative work between the systems without communication

Remote Robot Systems with Force Feedback

*2 S. Ishikawa *et al.*, IEICE CQ2020-18, June 2020.

Previous Work*1

- Carrying an object between two remote robot systems
- Suppose that the network environment of one system becomes worse
- By using force information obtained by the force sensor, a robot of the system follows the movement of the other robot.
- Enhancement of the robot position control using force information*2

$$\boldsymbol{P}_t = K_{\mathrm{adj}} \, \boldsymbol{F}_t$$

 P_t : Position adjustment vector, K_{adj} . Coefficient (depending on velocity)

 F_t : Sensed force

Comparison between a robot under the enhanced control and a human

- Possible to move the robot under the control without communication
- The human outperforms the robot, which applies larger force to the object.

Purpose of This Work

- Propose robot movement control using force sensor
- Compare the effect of the proposed control by experiment

This Work

Robot movement control using force sensor

$$\boldsymbol{P}_t = \boldsymbol{\alpha} \, \boldsymbol{P}_{t-1} + K_{\text{mov}} \, \boldsymbol{F}_t \qquad (0 \le \alpha \le 1)$$

 P_t : Position adjustment vector, K_{mov} : Coefficient (depending on weight of object)(=0.279*3), F_t : Sensed force

Based on Newton's equation of motion and the formula about distance and time

Experiment Method

Followed the movement of robot arm 1 under the control

Moved automatically

Experimental Results

Conclusion

- Proposed the robot movement control using force sensor for cooperative work between two remote robot systems with force feedback
- Examined the effect of the proposed control by experiment

- The proposed control is superior to the conventional control.
- We need to further improve the proposed control.

Future Work

- Clarification of the optimal values of parameters (α and K_{mov})
- Study of switching method between the proposed control and control in which communication between two robots is possible